XХХI International Symposium "Atmospheric and Ocean Optics. Atmospheric Physics"

July 08-11, 2025, Tomsk, Russia

Submitted reports

  1. Zuev V.V., Savelieva E.S., Sidorovski E.A.
    Vertical structure of the Antarctic polar vortex during sudden stratospheric warmings  
  2. Gerasimov V.V., Nevzorov A.V.
    The impact of Arctic polar vortex intrusions into mid-latitudes on aerosol vertical distribution in the stratosphere over Tomsk
  3. Gerasimov V.V., Maslennikova E.A., Pavlinsky A.V.
    The impact of Erebus volcano gas emissions on ozone depletion and the ozone hole area in the Antarctic stratosphere
  4. Mirsanov. M.A.
    RESULTS OF MEASUREMENTS OF HIGH-INTENSITY PRECIPITATION CHARACTERISTICS PERFORMED WITH THE OPTIOS OPTICAL PRECIPITATION GAUGE FOR THE WARM PERIOD OF 2024
  5. Lutskin E.S., Obolkin V.A., Khodzher T.V.
    Spatiotemporal Dynamics of Gaseous Elemental Mercury Concentrations in the Atmospheric Air of Southern Baikal Region During Summer 2024
  6. Shikhovtsev A.Yu., Kovadlo P.G., Driga M.B., Kiselev A.V., Eselevich M.V.
    MACHINE LEARNING METHODS FOR FWHM ESTIMATING AT THE SAYAN SOLAR OBSERVATORY SITE
  7. Antokhina O.Yu.1,2, Antokhin P.N.1, Zorkaltseva O.S.2, Gochakov A.V.3 , Bobrovnikov S.M.1, Zharkov V.I.1
    Troposphere-Stratosphere Dynamics and Coupling during the winter of 2024-2025  
  8. G.A. Filimonov
    Deep Learning-Based Estimation of the Refractive Index Structure Parameter from Turbulent Broadening of a Gaussian Beam
  9. Terpugova S.A., Antonov A.V., Yausheva E.P., Shmargunov V.P., Panchenko M.V.
    Estimation of urban effect on the aerosol condensation activity
  10. G.A. Filimonov
    Recent advances in atmospheric turbulence strength characterization based on deep machine learning
  11. V.V. Kolosov, G.A. Filimonov
    ANALYSIS OF PROBABILITY DENSITY FUNCTIONS OF LASER RADIATION POWER FLUCTUATIONS AVERAGED OVER RECEIVER APERTURE FOR A WIDE RANGE OF ATMOSPHERIC PROPAGATION CONDITIONS
  12. G.A. Filimonov, V.V. Gerasimov, A.V. Nevzorov
    AUTOMATIC CLASSIFICATION OF AEROSOL SCATTERING RATIO PROFILES IN THE STRATOSPHERE USING DEEP LEARNING